Active Roof System

Final Presentation

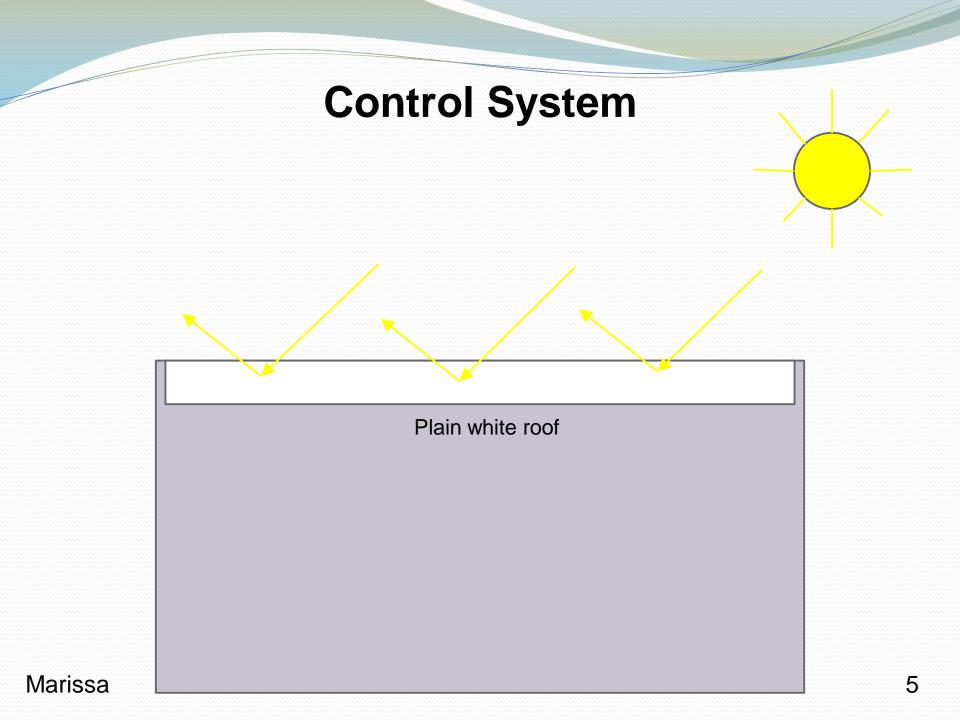
Mohammed Alkhaldi, Coy Cody, Donovan Hard, Marissa Munson and Krysten Whearley

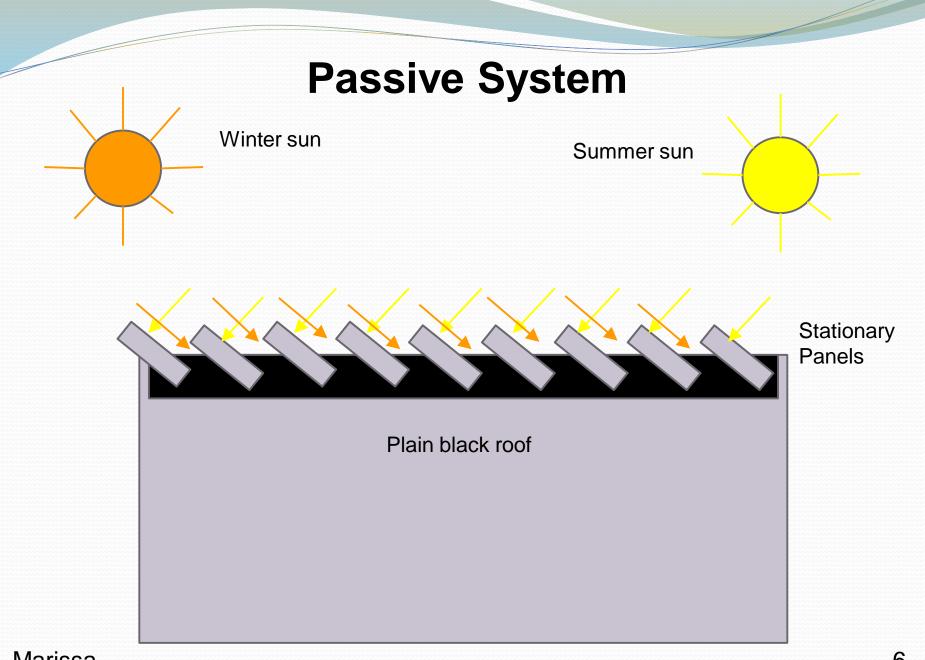
December 9th, 2013

Overview

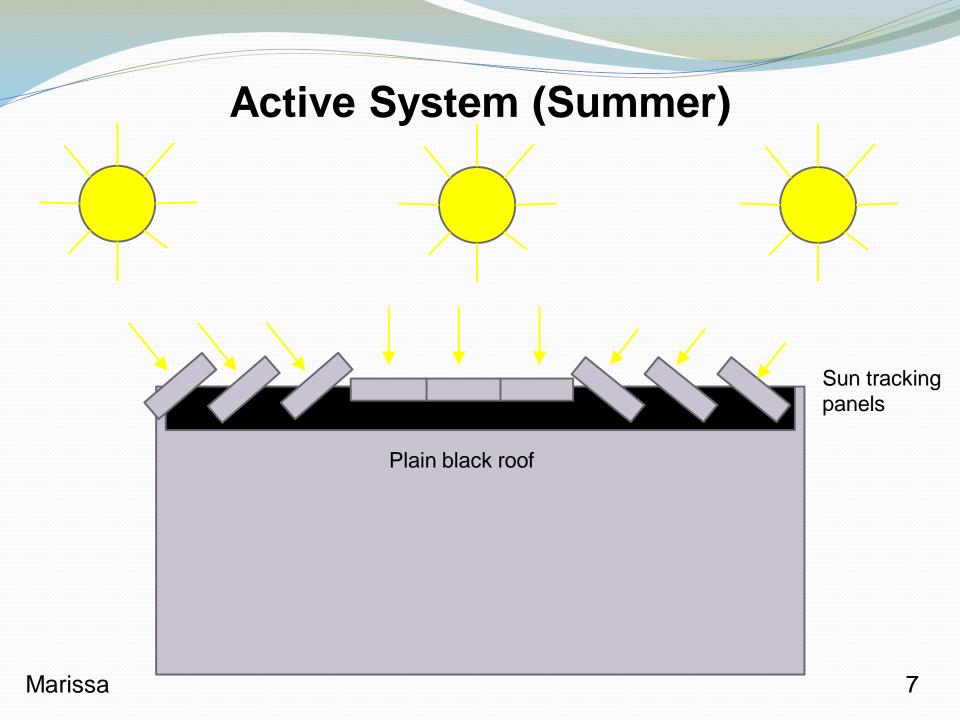
- Project Introduction
- Need Statement & Project Goal
- Brief Description of Roof Designs
- Project Timeline
- Project Objectives
- Engineering Requirements for Analysis
- Quality Function Deployment
- Prototype Design Requirements
- Internal Temperature Measurements
- Internal Heating/Cooling System

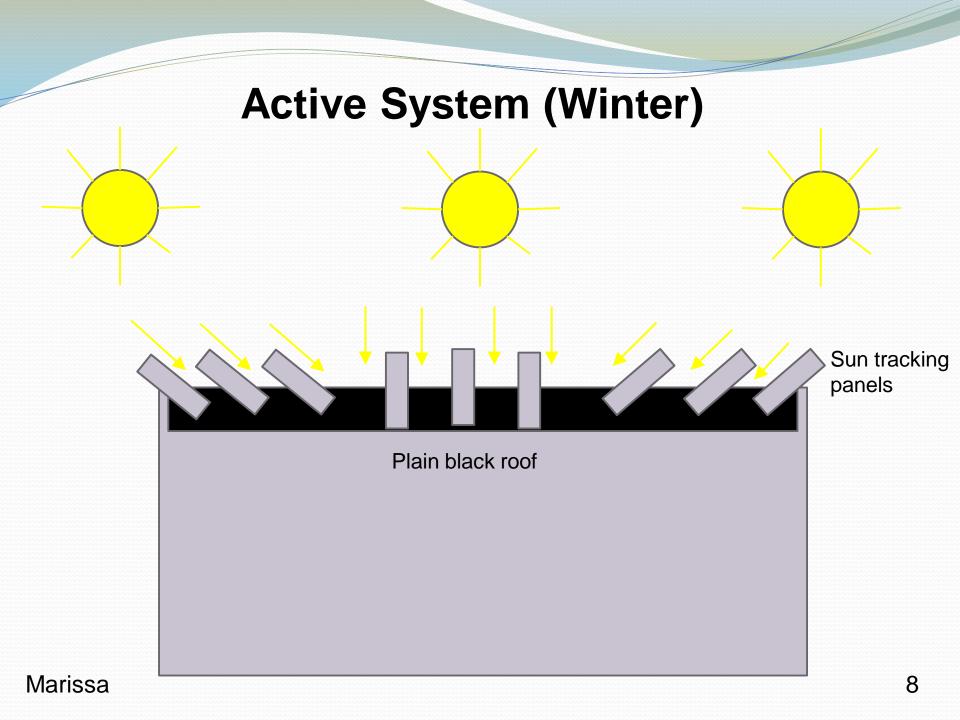
Overview Cont.


- Control Systems
- Average Environmental Conditions
- Calculating Surface Temperature of Roof
- Transient Conduction
- Checking for Internal Circulation
- Estimating the Temperature of the A/C Air
- Computer Simulated Fluid Modeling
- Final Prototype Designs
- Material List & Estimated Cost


Project Introduction

- Amount of power consumption due to cooling and heating of large warehouse buildings it too high
 - Project will investigate roof designs that will lower this power consumption
- Project Clients
 - Dr. Michael Shafer (NAU Professor)


Need Statement & Project Goal


- Need Statement
 - The amount of power usage to keep the interior of large buildings at a comfortable, cool temperature is too high.
- Project Goal
 - To design and build roof system prototypes that can maintain the interior at constant temperature of a building model while using minimal power.

Marissa

Project Timeline

• For Fall 2013

	Weeks								
Task Name	1	2	3	4	5	6	7	8	9
Design Phase									
* Final Design Selections				\diamond					
Design Analysis				-			-		
Experimental Construction									
Finalizing the Designs							•		
* Submit Final Prototype Designs									\diamond

Marissa

Project Timeline Cont.

• For Spring 2014

	Weeks												
Task Name	1	2	3	4	5	6	7	8	9	10	11	12	13
Gathering Materials	•												
Construction of Prototypes										-			
Testing Prototypes								-					
Final Prototype Presentation													\Diamond

Marissa

Project Objectives

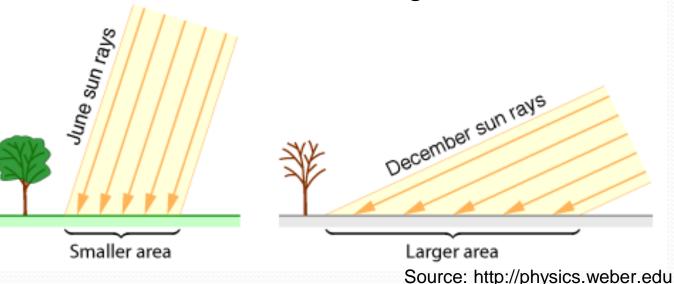
Objective	Measurement Basis	Units
Maintain Constant Internal	Interior Temperature of Structure	⁰ E
Temperature of 70°F	Throughout a Day	F
Reflect/Absorb the Sun's	External Roof Temperature	°F
Radiation	Throughout a Day	F
	Power Used by Control, Active	
Low Power Usage	and Passive Roof to Maintain	kWh
	Internal Temperature	

Engineering Requirements for Analysis

- Material Strength (YS)
- Efficiency
- Weight
- Manufacturable
- Durable
- Functional
- Accuracy

Quality Function Deployment

		Engineering Requirements Benchmarks									
			I		/				3	/	Denominarika
				19/							
			×	5/							
			enor			able				. The	ign
			Stic	2	· /	cture	~ /	nal		Cests	des
	Customer	, e		ent it	STIL C	Jilde 2	De de	il ⁰¹	ITal in	e ci	Ne
Customer Needs	Weights	Mar	stral Strength	lenc, weit	Mai	utacturable Dura	able Funct	ACU	Hacily Activ	ue Design Passi	ive design
1. Seasonal	9	8	9	0	0	9	8	9	Х	Х	
2. Light Weight	4	2	0	10	0	7	5	0		Х	
3. Low Cost	10	4	6	9	8	5	9	7		Х	
4. Minimum Power input	10	0	9	0	0	0	0	6		Х	
5. Stiff	6	10	0	8	0	6	6	0	Х	Х	
6. Efficiency	8	0	10	0	0	4	9	8	Х		
7. Easy to Control	7	0	0	6	0	0	6	3		Х	
Unit o	of Measure	psi	KWH	lb	Unitless	Unitless	Unitless	θ			
		Techical Target									

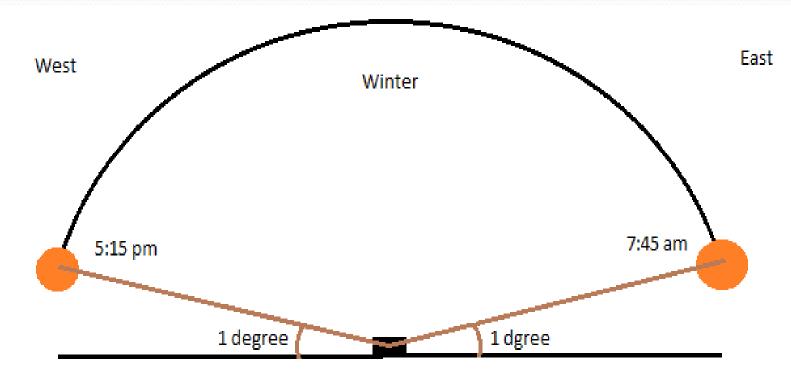

- For all Prototypes:
 - Scaled to (smallest) Wal-mart Building
 - Chosen due to size limitations on Prototypes
 - Interior Dimensions of the smallest Wal-Mart
 - 30,000 sq ft (approx. 173.2ft x 173.2ft)
 - 25ft ceilings

- Scaling Factor dependent on
 - Insulation material for model
 - Smallest thickness possible
 - Thermal resistance (R value)
 - Ability to reduce heat transfer

- Estimate Walmart Insulation
 - Walls R14 (3.5 in thick)
 - Ceiling R34
 - Floors R27
- Prototype Insulation Selected
 - Cork (Roll) (R=3.6 per inch)
 - $_{\circ}$ Thickness = 3/32 inch (R= 0.3375)
 - Layers: 3 ceiling, 2 floor & 1 walls

- For all Prototypes:
 - Must include heating/cooling system
 - Use to keep interior constantly at 70°F
 - Be able to measure power consumption
 - Measure/Record Interior Temperature
 - Every 10 min
 - Without opening Prototype
 - Interior Dimensions of Prototypes
 - 4.5ft x 4.5ft x 0.65ft

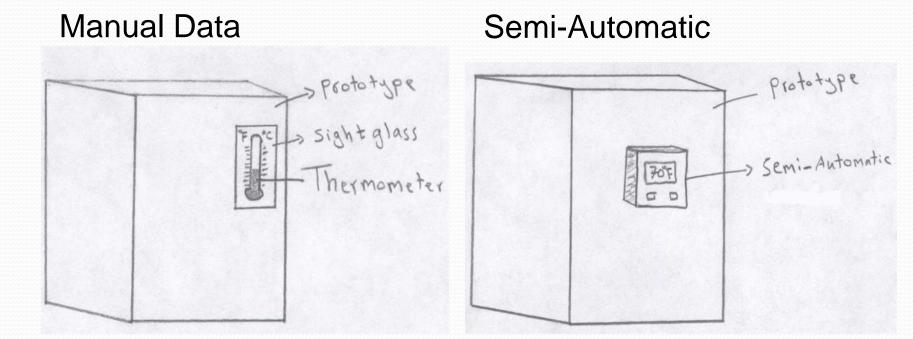
- Only for Passive Prototype:
 - Reflective Panels must be at optimum angle
 - Angled to allow reflection in summer and absorption in winter
 - Recommended Panel Angle: 43°



- Only for Active Prototype:
 - Reflective Panels must rotate automatically to correct angle throughout the day
 - Angle to allow reflection in summer and absorption in winter
 - Based on Flagstaff (Testing them here)

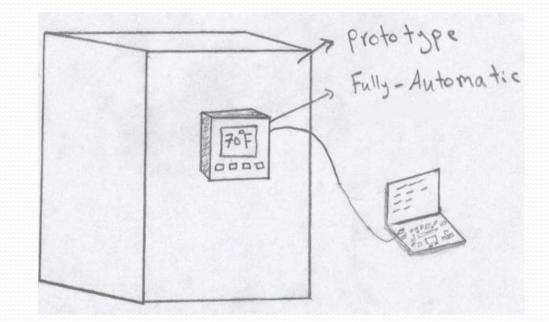
 Average Sunrise and Sunset Times for each Season Based on Flagstaff

Season	Average Sunrise Time	Average Sunset Time
Winter	7:45 am	5:15 pm
Spring	6:45 am	6:30 pm
Summer	5:20 am	7:30 pm
Fall	6:20 am	6:20 pm


Ex. Sunrise and Sunset Angle Based on Flagstaff

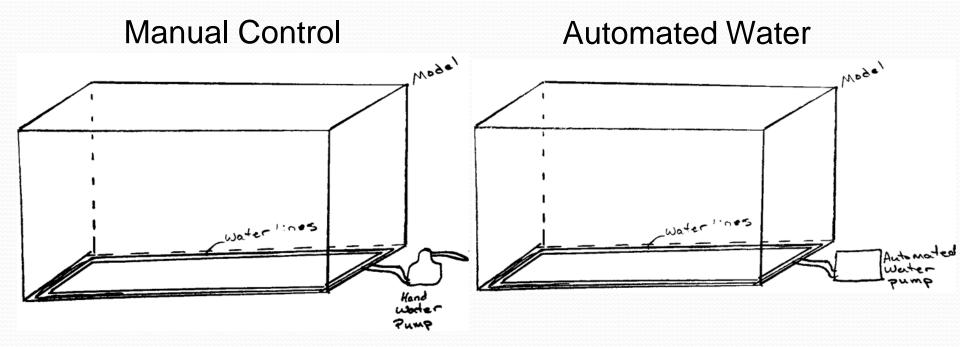
Source: http://www.susdesign.com/sunangle

Internal Temperature Measurements

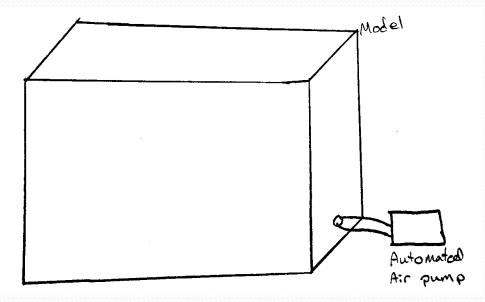

Considered 3 Designs

Internal Temperature Measurements Cont.

Fully Automatic (Chosen Design)


- Advantages
 - Accurate
- o Disadvantage
 - Expensive

Use device that can be programmed to read and record the temperature


Internal Heating/Cooling System

Considered 3 Designs

Internal Heating/Cooling System Cont.

Automated Air (Chosen Design)

- Automated heating/cooling system using air
- Program device to pump hot/cold air
- Similar to A/C

Control Systems

- Two arduino board control systems
 - 1 ~ Programmed to control the motor rotating the refective panels on active roof design
 - Panels attached on one shaft mechanism and rotated simultanteous with motor
 - 2 ~ Uses internal temperature measurements to control the heating/cooling system

Average Envirnomental Conditions

- Average Values for Flagstaff, AZ
 - Solar Radiation
 - Fall & Winter: 647.92 W/m²
 - Spring & Summer: 923.96 W/m²
 - Outside Temperature
 - Fall & Winter: 46.67°F
 - Spring & Summer : 68.83°F

Calculating Surface Temperature of Roof

- Important Values used to Calculate T_s
 - Average convection coefficent: h_{avg}
 - Horizontal Plate with Hot Upper Surface
 - o Emissivity
 - Black Paint: 0.92
 - White Paint: 0.99
 - Reflective Panels (Polished Aluminum): 0.05
 - Estimated % of Solar Radiation Reflected

Prototype	Fall/Winter	Spring/Summer	
Active	0	100	←Ideal
Passive	35	65	\leftarrow Estimated

Transient Conduction

- Assuming
 - No internal circulation due to buoyancy forces
 - Due to small ceiling height (h=0.65ft)
 - Therefore, heat is transferred through air by conduction
 - Combine ceiling insulation and internal air into one "solid" object
 - Using weighted average based on thickness
 - $t_{air} = 0.65 \text{ft } \& t_{ins} = 0.0234 \text{ft}$

Transient Conduction Cont.

- Finding time it would take for internal air of prototypes to reach T_{uncomfortable} by conduction heat transfer
 - \circ T_{uncomfortable} = 75°F

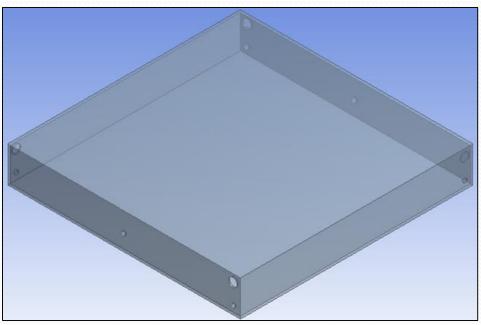
	Time to Reach 75°F from 70°F (min)							
Prototype	Winter/Fall	Spring/Summer						
Control	2.657	80.392						
Passive	2.660	80.672						
Active	2.656	105.747						

 Based on our calculations a heating system is not required for the winter months.

Checking for Internal Circulation

- For the Natural Convection of Enclosures
 - \circ If calculated Ra_L Number <1708
 - No circulation within the enclosure

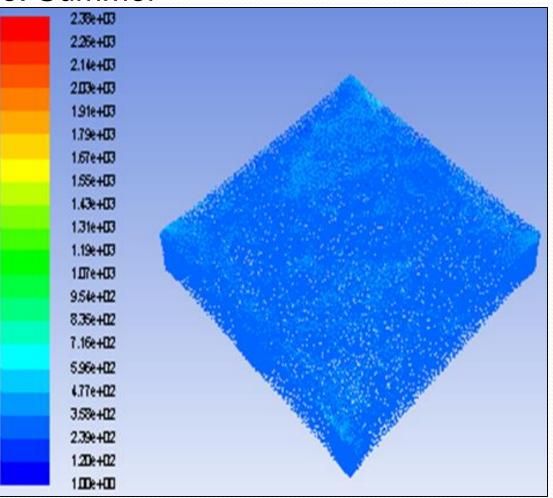
	Ra _L Number (*10 ⁹)for Different T _{ceiling} (°F)								
T _{floor} (^o F)	70	75	80	85	90				
70	0	0.7	1.38	2.02	2.64				
75	-	0	0.67	1.32	1.94				


 There will be natural air circulation for all expected T_{ceiling}

Estimating the Temperature of A/C Air

- Basic Model of Ideal Gas Mixture of Air
 - $_{\odot}$ Assuming half the hot air goes out vents
 - \circ T_{1hot}=75 ° F & T₂=70°F
 - Thermodynamic Energy Balance leads to T_{A/C}≈65.0°F

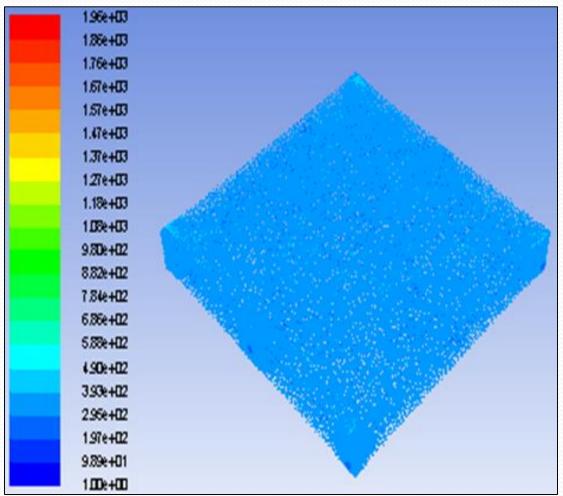
Computer Simulated Fluid Modeling


- 6 Inlets
 - 1 inch diameter
 - Fan flow rate of 2 ft²/min
 - Blowing T_{air}=290K≈62°F
- 4 Outlets
 - 2 inch diameter
 - Natural outflow

Computer Simulated Fluid Modeling Cont.

Worst Case Scenerio: Summer

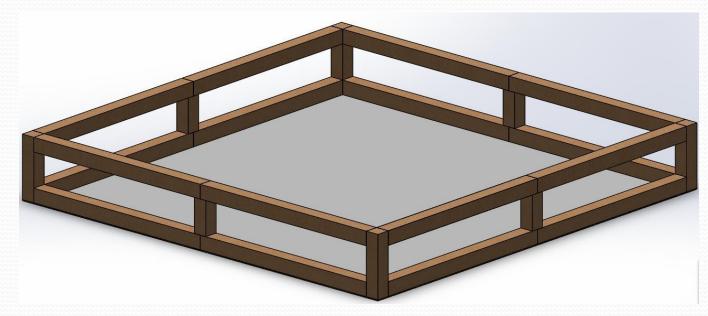
- $Q = 924 W/m^2$
- T = 77°F



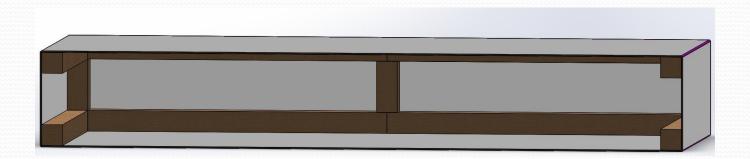
Donovan

Computer Simulated Fluid Modeling Cont.

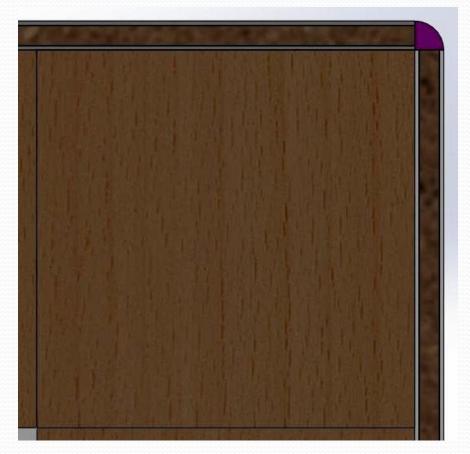
Worst Case Scenerio: Winter


- $Q = 648 \text{ W/m}^2$
- T = 71°F

Donovan

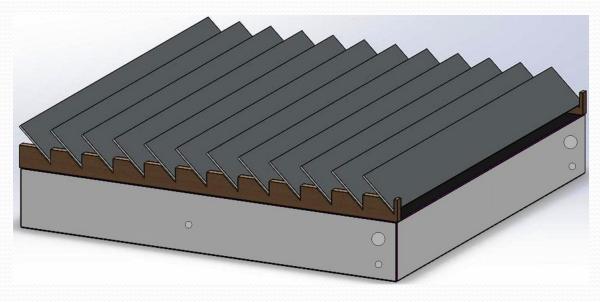

Final Prototype Designs

Internal Frame of Prototype



o 36 in. x 1 in. Wood Square Dowels

Inside of all three prototypes


Zoomed in on a Wall-Wall corner of the prototypes

Control Roof Prototype

o Plain white roof

Passive Roof Prototype

Stationary Reflective Panels with Black Roof

Active Roof Prototype

Auto-Rotating Reflective Panels with Black Roof

Material List & Estimated Cost

For	Material	Price per Unit	Quantity Needed	Cost
Frame/ Panel Cradles	Square Wooden Dowels	\$3.50	72	\$252.00
Walls	Poster Board	\$0.99	36	\$35.64
	White Duct Tape	\$4.99	1	\$4.99
Insulation	Light Cork Roll	\$14.99	22	\$329.78
Screws	Nails	\$9.37	1	\$9.37
Sealing	Hot Glue Gun	\$6.99	1	\$6.99
	Hot Glue Sticks	\$6.99	2	\$13.98
Panels	Mylar	\$29.97	1	\$29.97
	Foam Poster Board	\$3.00	7	\$21.00
Control Systems	Arduino Uno	\$27.99	2	\$55.98
Active panel motor	Arduino servo motor	\$9.95	4	\$39.80
Temperature Monitor	n/a	\$285.00	1	\$285.00
Inlet Fan	n/a	\$9.99	18	\$179.82

TOTAL: \$1,264.32

*Note: Total does not include A/C units at this time

Conclusions

- Power usage of large, warehouse like buildings is too high
 - Constructing and testing 3 different roof system prototypes
 - Control ~ Plain White Roof
 - Passive ~ Stationary Reflective Panels
 - Active ~ Rotating Reflective Panels
 - Scale Model of Small Wal-Mart
 - Interior Dimensions: 0.65 x 4.5 x4.5ft

Conclusions Cont.

- Insulation: 3/32in thick cork
 - Ceiling ~ 3 layers
 - Floor ~ 2 Layers
 - Walls ~ 1 layer
- Cost of Construction for all 3 Prototypes
 Approximately: \$1,300 (without A/C units)
- Interior of Prototypes Need to stay about 70°F
 Using fully automatic temperature measuring

Conclusions Cont.

- Only automatic A/C system is required
 - A/C air at about T=62°F & flow rate=2 ft²/min
 - 6 Inlets with Fans: 1in diameter
 - 4 Outlets to Naturally vent: 2 in diameter
- Control Systems for each Prototype
 - Audrino Boards
 - One connected to temperature gage and A/C unit
 - Another to connected to the motor which controls the panels on the active roof

- M. Shafer, Interviewee, Project Intro and Passive/Active Roof Designs. [Interview]. 1 October 2013
- M. Shafer, Interviewee, *Project Intro and Passive/Active Roof Designs.* [Interview]. 22 October 2013.
- "Wal-Mart Stores Inc (WMT.N)," Reuters, [Online]. Available: http://www.reuters.com/finance/stocks/companyProfile?symbol=WMT.N. [Accessed 26 10 2013].
- A. Wilson, "Expanded Cork The Greenest Insulation Material?," BuildingGreen.com, 2013. [Online]. Available: http://www2.buildinggreen.com/blogs/expanded-cork-greenest-insulationmaterial. [Accessed 26 10 2013].
- C. Gronbeck, "SunAngle," Sustainable by Design, 2009. [Online]. Available: http://www.susdesign.com/sunangle/. [Accessed 27 10 2013].
- D. Shroeder, "The sun and the Seasons," weber.edu, 2011, [Online]. Available: http://physics.weber.edu/schroeder/ua/SunAndSeasons.html [Accessed 25 10 2013]

- "30-49-109 Insulation Guide.pdf," 08 2009. [Online]. Available: http://www.certainteed.com/resources/30-49-109%20Insulation%20Guide.pdf. [Accessed 26 10 2013].
- J. Lochner, "Ask an Astrophysicist," nasa.gov, 1997, [Online]. Available: http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/970210b.html [Accessed 27 10 2013]
- D. Shroeder, "The sun and the Seasons," weber.edu, 2011, [Online]. Available: http://physics.weber.edu/schroeder/ua/SunAndSeasons.html [Accessed 25 10 2013]
- MicroDAQ, The DataLogger Store, [online] 2013, Available: http://www.microdaq.com/ [Accessed 22 October 2013]
- SunPosition, SunPosition calculator, [online] 2013, Available: http://www.sunposition.info/sunposition/spc/locations.php [Accessed 22 October 2013]

- "Emissivity Values for Common Materials," Infrared Services Inc., 2000. [Online]. Available: http://www.infrared-thermography.com/material-1.htm. [Accessed 13 11 2013].
- "Emissivity Table," ThermoWorks, 2013. [Online]. Available: http://www.thermoworks.com/emissivity_table.html. [Accessed 16 11 2013].
- "Monthly Averages for Flagstaff, AZ," The Weather Channel, 2012. [Online]. Available: http://www.weather.com/weather/wxclimatology/monthly/graph/USAZ0068. [Accessed 16 11 2013].
- "30-Year Average of Monthly Solar Radiation, 1961-1990," NREL (National Renewable Energy Laboratory), 1990. [Online]. Available: http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/redbook/sum2/03103.txt. [Accessed 13 11 2013].

- F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, Jefferson City: John Wiley & Sons, Inc., 2011.
- M. J. Moran, S. N. Howard, B. D. Daisie and M. B. Bailey, Fundamentals of Engineering Thermodynamics, Wiley & Sons, Inc, 2011.
- "A/C Room Size Calculator", Engineering Toolbox [Online] Available: http://www.engineeringtoolbox.com/sizing-ducts-d_207.html [accessed 17 11 2013].